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Abstract. A linear chain with exponential plus linear interactions (Toda lattice) can be 
mapped by the Bethe ansatz to a Fermi gas. The thermodynamics is treated by analogy 
to the delta-function Bose gas (Yang and Yang). Analytical solutions are given for the 
strongly anharmonic regime and low temperatures; the general case is treated numerically. 
For the case of weak anharmonicity the specific heats are compared with earlier approximate 
calculations. The anharmonic part of the specific heat is shown to be not very different 
from the corresponding classical result which can be interpreted as the specific heat of an 
ideal gas of solitons. For the quantum case the soliton-gas picture needs further investi- 
gation. 

1. Introduction 

There are very few quantum gases or liquids, with pairwise interactions among the 
particles, that have been treated exactly. The first example was a one-dimensional 
system of bosons with repulsive delta-function interactions which was solved by Lieb 
and Liniger (1963) using the Bethe ansatz. For this system it is possible to incorporate 
the interactions into boundary conditions which leads to a formal description of the 
system as a Fermi gas. Consequently the low-lying excitations are of two kinds: particle 
and hole excitations (Lieb 1963). The thermodynamics and the finite-temperature 
excitation spectrum were treated by Yang and Yang (1969). 

These methods were generalised by Sutherland (1971,1972,1978) to other integrable 
systems, e.g. with interactions V( r )  - r - 2  or s i r K 2  r, where r is the particle distance. 
For these systems the Bethe ansatz provides only the asymptotic wavefunctions; 
however, this is sufficient to obtain the ground state energy, the excitation spectrum 
and the thermodynamics. For the case of the Calogero model (interaction V-  F 2 )  
these results were shown to be exact (Sutherland 1971) by comparison with other 
methods (Calogero 1971, Marchioro and Presutti 1970). 

Generally an application to lattice models is not possible because bound states are 
not described by the Bethe ansatz which consists only of scattering states. However, 
the Toda lattice is an exception. This model (Toda 1967, 1981) is a chain of particles 
of mass m with nearest-neighbour interactions 

~ ( r ) =  (mw2/y2){exp[-y(r-ro)]+ y ( r -  ro)-l}. 
Here the attractive part is linear; for periodic boundary conditions the sum of the 
linear terms reduces t o  a constant ( 5  2). Thus the remaining problem is essentially 
that of a gas with exponential repulsive interactions. 

Sutherland (1978) showed that the Toda lattice can be considered to be the low 
density limit of a system with sinh-2 r interactions, which is completely integrable in 
the classical and the quantum case (Calogero et a1 1975). The integrability of the 
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quantum Toda lattice was also proven in the context of Lie algebras for both the 
periodic and non-periodic case (Olshanetzky and Perelomov 1983). 

Sutherland (1978) applied the Bethe ansatz to the sinh-* r system and performed 
the classical limit first and the low density limit afterwards. In this case the particle 
and hole excitations of the quantum problem reduce to the solitons and phonons of 
the classical Toda lattice. 

In order to study the quantum case one can either consider low densities without 
taking the classical limit or treat the Toda lattice directly. In this way Mertens (1984) 
obtained analytical results for large y, which means strong anharmonicity. Here the 
Toda lattice behaves effectively like a gas of hard spheres with constant attraction, 
where the radius of the spheres is the scattering length of the exponential part of the 
potential (1.1); for y+00 the radius of the spheres is r,. 

For arbitrary y the problem can be solved numerically (Mertens and Hader 1985). 
Here the hole excitations can be identified as phonons; for small anharmonicity the 
particle branch of the spectrum shows nearly the same dispersion as the classical 
solitons, though the ground state exhibits a large zero-point motion. Therefore it is 
tempting to interpret the particle excitations as quantum solitons. 

The results of the Bethe ansatz can be tested by the quantum transfer-integral 
method of Mertens (1975, 1976). Assuming a Hartree-Jastrow form for the ground 
state, the expectation value of the Hamiltonian is calculated exactly and the ground 
state energy is obtained variationally. For the Toda lattice it agrees within the numerical 
error of about 0.1% with the Bethe ansatz result (Mertens 1986). 

The test is particularly important because a rigorous justification of the Bethe ansatz 
for the Toda lattice is still missing. In fact, the quantum inverse scattering theory 
(QIST), which is an algebraisation of the Bethe ansatz technique, has been only partially 
successful in the case of the Toda lattice (Faddeev 1980, Korepin 1983, Gaudin 1983). 
On the other hand Sklyanin (1985) has recently combined the QIST with the method 
of Gutzwiller (1981), which so far could be evaluated only for the case of three or 
four particles. Sklyanin has reduced the determination of the spectrum to integral 
equations which are closely related to those of Sutherland (1978) and Mertens (1984). 

In this paper the thermodynamics is treated using the method of Yang and Yang 
(1969), which is based on the Bethe ansatz (§  2). Analytical results are given in § 3 
for the strongly anharmonic regime and low temperatures; the general case is treated 
numerically (§  4). We discuss in detail the high and low temperature regimes. The 
latter is particularly important when the Toda lattice is used as a model for a solid, 
but so far most of the literature treats only the classical statistical mechanics. The 
exceptions are a path-integral approach by Mertens and Buttner (1980) and a semi- 
classical approximation by Bolterauer and Opper (1981), which are valid only in the 
weakly anharmonic regime, however. 

A very interesting quantity is the anharmonic part of the specific heat which has 
been interpreted in a classical phenomenological theory (Mertens and Buttner 1981) 
as the specific heat of an ideal soliton gas. We show that this anharmonic part is not 
very different for the quantum and the classical model; this means that solitons also 
play a role in the quantum Toda lattice. 

2. Bethe ansatz and the integral equation of Yang and Yang 

After a scaling of all lengths by l / y  and energies by h 2 y 2 / 2 m ,  the Hamiltonian of the 
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Toda chain with periodic boundary conditions is 

V, 

with the dimensionless coupling constant 

and Vo = 2C2(a - ro) ,  where a is the lattice parameter. The additive constant Vo results 
from the attractive linear term of the potential ( 1 . 1 )  and can be omitted during the 
calculation; it will be added to the final results for the energies. 

Considering large separations the N constants of motion can be identified with 
the momenta k, of the particles. When the particles scatter the interactions can produce 
only rearrangements of the k, since the system is completely integrable. Thus the 
wavefunctions asymptotically have the Bethe form 

where P denotes one of the N !  permutations of the k,. The amplitudes A depend 
only on the two-body phase shift S (  k ,  - k,) which connects two configurations differing 
by just one permutation (Lieb and Liniger 1963). 

S(k) is obtained from the solution of the two-body problem (Bruschi et a1 1982, 
Mertens 1984), and is essentially the low density limit of Sutherland’s (1978) phase 
shift for the sinh-? r system. Only the derivative S ’ (  k) will be used explicitly in the 
following: 

S’(k) = r,+ 2 In C - $( 1 + ik) - $( 1 - ik) (2.4) 
where t,b is the digamma function. 

In the thermodynamic limit ( N  and length L+ 00, with finite density d = N /  L )  
p (  k) is defined as the density of the k, p h  (k)  as the density of ‘holes’ and the sum of 
both is denoted ptot(k). The energy is 

m 

E / N = l [  d -m dkp(k)k2+ Vo (2.5) 

ptot is related to p by 
m 

dk’S‘(k-k’)p(k’). (2.7) 

In the thermal equilibrium the free energy as a functional of p(k)  and ph(k) has 
to be minimised under the constraints (2.6) and (2.7) which 
equation of Yang and Yang (1969) 

l n [ l + e x p ( - ~ ~ ( k ‘ ) ) ] - 2 C ~ r ~  

where /3 is the inverse temperature, p is the chemical potential 

p h / P  = exp(PE). 

leads to the integral 

and E is defined by 

(2.9) 
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The pressure P is obtained from the free energy by F = N p  - PL 

dk 
P -,2T 

P =L 5 -In[ 1 +exp(-PE( k ) ) ]  -2C2.  (2.10) 

The last terms in the equations (2.5), (2.8) and (2.10) are slight modifications of the 
original Yang-Yang equations due to the attractive linear part of the Toda potential 
(see (2.1)). 

With these equations the thermodynamics is complete: the non-linear integral 
equation (2.8) must be solved for given p and T Then P ( p ,  T )  can be calculated by 
(2.10); the differential d G  = - S  d T +  L d P + p  d N  of the free enthalpy can be trans- 
formed because of G = p N into L d P = N d p  + S d T. From here all remaining thermo- 
dynamic quantities can be derived. 

In the classical limit the integral equation for e ( k )  has recently been solved 
numerically (Theodorakopoulos 1984) and analytically (Opper 1985). The resulting 
free energy is identical to the exact classical free energy of Toda (1975). In this paper 
we give solutions for the quantum mechanical case. 

3. Analytical solutions for large aoharmonicity and low temperatures 

The anharmonicity of the Toda potential (1.1) is controlled by the parameter y. For 
y + 0, (1.1) reduces to a harmonic potential with the eigenfrequency w .  Large y means 
large anharmonicity or weak coupling C = mw/ Ay2.  For C << 1 the zero-temperature 
limit of the central equation of our problem, namely the integral equation (2.8) for 
E ( k ) ,  has been solved (Mertens 1984) by E = k 2 -  k : ,  where k,<< 1 is the Fermi 
momentum. Therefore we assume that for sufficiently low temperatures 

~ ( k ) =  k 2 -  ki (3.1) 

with k,<c 1, where k, and thus e ( k )  are temperature dependent. 
For Ik’l> k ,  the term In(1 +exp(-PE)) in the integrand of (2.8) is exponentially 

small; therefore the main contribution to the integral comes from ( k ‘ l ~  k,. For low 
temperatures we need to consider only excitations near the Fermi surface which means 
that Ikl is of the order of k, and ko. Because of k,<< 1 we have l k -  k’l<< 1; thus the 
kernel a’( k - k ‘ )  can be replaced by a rapidly converging Taylor expansion. If only 
the first term 8 ‘ (0 )=us  of the expansion is retained we obtain an equation for e in 
which the integral no longer depends on k 

E (  k )  = k 2  - p + a, - T In[ 1 + exp( --PE( k ’ ) ) ]  - 2C2r0. 1% :: (3.2) 

Thus we see that the ansatz (3.1) is in fact a solution. k,( T )  still has to be determined 
and we must check for which regime our assumption k,<< 1 is fulfilled. 

U, is obtained from the Taylor expansion of the digamma function in (2.4) 

u s =  6’(0) = r0+2 In C + 2 y ,  (3.3) 
where yE = 0.577 . . . is Euler’s constant. Because of S’(0) = limk,,[ 6 ( k ) /  k ]  the constant 
U, represents the scattering length of the potential in (2.1). As a test we can perform 
the limit y + CO where the Toda potential reduces to a hard-sphere potential. Returning 
to the original units we see that in fact us+ro for y + CO. 
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Knowing E( k ) ,  (2.9) g' ives us 

(3.4) 

If this is inserted into (2.7) this integral equation can be treated in quite the same 
manner as that for c ( k ) ;  the result is a constant ptot 

cc 

277ptOt = 1 - U ,  dk' p (  k') = ( a  - a,)/ a (3.5) L 
because of (2.6). ptOt would be (277)-' if a, were zero. Thus the density p(k)  in (3.4) 
is that of free fermions in a volume which is reduced by Nu,. Since the Pauli principle 
has the same effect on the wavefunctions as a hard sphere with zero radius, we see 
again (cf § 1) that our system behaves effectively like a gas of hard spheres of radius 
a,. An additional constant attraction, resulting from the linear part of the Toda 
potential, leads to additive constants in the energy, the chemical potential and the 
pressure (see below). 

k 

Figure 1. For large anharmonicity the numerically obtained density p of occupied k is 
nearly the same as that of free fermions in a reduced volume, see (3.4), (3.5); temperatures 
T in P = O ,  c =O.OI .  

Before we proceed we introduce a more compact notation by the definition of a 
functional 

(3.6) 

With the substitution k2 = y ,  equation (2.6) together with (3.3) reads d = p, , ,F[  11; using 
(3.5) we obtain an expression for the lattice constant 

a = a, + 27r/F[ 1 1 .  (3.7) 

E / N =  Vo+-F[y]/F[l]. (3.8) 

The energy (2.5) is 
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After partial integration, (3.2) and (2.10) can be written as 

E ( Y )  = Y - I.L + (as/ T)F[Y 1 - 2C2ro 
P =  F [ y ] / r - 2 C 2 .  

(3.9) 

(3.10) 

The chemical potential is obtained by considering & ( y o )  

P- = Y"+ ( a s / ~ ) F [ Y l  -2C2ro. (3.11) 

The elimination of F[1] and F[y] from (3.7), (3.8) and (3.10) yields an equation 

(3.12) 

which will be shown together with numerical results in 0 4 (figure 4). We note that 
for fixed length or fixed pressure the temperature dependence of the energy is the same 
as that of the pressure or the lattice constant, respectively. Therefore we show only 
E ( T )  in the following figures and omit P ( T )  and a ( T ) ,  respectively. In order to 
calculate explicitly E( T), p (  T ) ,  etc, we take the two leading terms of the Sommerfeld 
expansion (see e.g. Ashcroft and Mermin 1976) for the functionals and obtain 

of state 
(P + 2C2)( a - U,) = 2( E / N - Vo) 

(3.13) 

(3.14) 

x = ( r2/24kk)  T 2  g(x)  = (kO(X)/kF). (3.15) 
In the following we consider two special boundary conditions. We start with the 

pressure P = 0, which will be denoted by an index P. Equation (3.10) yields Fp[y] = 
2 r C '  which can be expressed by the Fermi momentum kF at zero pressure (Mertens 
1984) 

(3.16) 

Together with (3.13) we obtain g 3 + 3 x / g  = 1 which yields g = 1 - x - 2x2 in second 
order in x. In this way we have eventually determined 

(3.17) 

and we see that our assumption ko<< 1 is indeed fulfilled for C << 1 and for temperatures 
which satisfy x<< 1. This means T<< 0.02 for C = 0.01, which is the value of C in the 
figures. Note that T is dimensionless ( k B T  is measured in units of h2y2/2m). 

k, = (3 r C 2 )  1'3. 

ko = kp( 1 - x - 2x2) 

Inserting g(x)  into (3.14) we obtain 

Fp[l]=2kp(l-2x-5x2) 

and finally 

a = a,+ ( r /  kp)(2x +9x2) 

= po - k $ ( 2 ~  + 3x2) 

E /  N = Eo/ N + k;(2x +9x2). 

(3.18) 

(3.19) 

a,, F~ and E,, are the zero-temperature values of Mertens (1984). The specific heat 
per particle 

Cp = (r2/6k;) T +  ( r4/ 16k6,) T3 (3.20) 
is shown in figure 6 in 0 4 together with results for higher temperatures. 
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t 

0 5 
T / l O - j  

Figure 2. Chemical potential against temperature. Broken curve: analytical result (3.19); 
full curve: numerical result ( 5  4). C = 0.01, P = 0. 

The second boundary condition, fixed length L = Nro, is treated in quite the same 
way. The results are 

P = ( 2 / 3 ~ ) k i (  1 + 6~ - 9x2) 

E /  N = i k t (  1 + 6~ - 9 ~ ’ )  

C, = ( .rr2/6k5) T + ( r4/48 k6,) T’ 

(3.21) 

where k ,  = ~ / ( - 2  In C -27,) is the Fermi momentum for fixed length. For C = 0.01 
the condition ko<c 1 is fulfilled if T<c 0.3. 

4. Numerical results for the general case and discussion 

The central equation is the non-linear integral equation ( 2 . 8 )  for E ( k ) .  An iterative 
solution converges after a slight modification, namely the subtraction of ~ ( 0 )  which 
also eliminates the constants 

K ( k ,  k ’ )  T In[ 1 + exp( - P E (  k’))] (4.1) 
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I I I I I I I 
0 5 

r / 1 0 - ~  

Figure 3. Energy against temperature. Broken curve: analytical result (3.19); full curve: 
numerical result ( 5  4). C = 0.01, P = 0. 

with K = 2 Re{+( 1 - ik’) - + [1+ i( k - k ’ ) ] } .  Apart from the temperature, ~ ( 0 )  = .so is 
the only parameter in (4.1). It has to be varied until the chosen boundary condition 
is satisfied. For constant pressure (2.10) must be fulfilled; for the case of constant 
length the linear integral equation (2.7) for p (  k )  must be solved first in order to obtain 
the lattice constant by (2.6)t. After having fixed E ~ ,  all thermodynamic quantities can 
be calculated from ~ ( k )  and p ( k ) ,  e.g. energy and entropy. 

We begin the discussion of the results with the strongly anharmonic case C = 0.01 
in order to compare with the analytical results of 0 3. Figures 2 and 3 show the energy 
E (  T )  and the chemical potential p (  T )  for zero pressure. The analytical approximations 
turn out to be valid for T 5  0.005, which agrees with the estimate T K  0.02 below (3.17). 
The results for constant length are not shown because the qualitative behaviour of the 
T dependence is the same; here the range of validity of the analytical calculation is 
one order of magnitude larger, in accordance with the estimate T<< 0.3 (see (3.21)). 
In the PV diagrams of figure 4 the isotherms for the two lowest temperatures agree 
well with the analytical results from the equation of state (3.12). Finally the specific 
heats are shown in figure 5 ;  for the discussion see below. 

t The numerical procedure is described here only in principle. In order to avoid a need for the integral 
equations to be solved many times, the procedure must be modified in practice, depending on the particular 
boundary condition. 
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Ll Ll 

Figure 4. Isotherms in the P V  diagram; a is the lattice parameter, temperatures in 
(a) from the equation of state (3.12), ( b )  numerical ( 5  4) C =0.01. 

Let us consider now the case of the coupling constant C = 1 which is accessible 
only numerically. In figure 6 we see that the densities p ( k )  and p,,,(k) are completely 
different from those of a free fermion system, in contrast to the case C = 0.01. We 
note that p,,,(k) is generally temperature dependent; in fact p, , , (k)  is not the density 
of states, since the k, in (2.3) are not the quantum numbers. Thus we see that the 
Fermi system to which our problem has been mapped by the Bethe ansatz generally 
gives only a formal description. Therefore p (  k) and p,,,( k) do not have a direct physical 
meaning but only the integrals which contain them, e.g. the energy, the entropy and 

Figure 5. Specific heats at zero pressure and constant length in the case of large anharmonic- 
ity. Broken curves: classical results; chain curves: asymptotics for T+m. C=O.Oi. 
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k 

Figure 6. Total density plot (full curves) and density p of the occupied k (broken) for the 
coupling C = 1 at three different temperatures. P = 0. 

the pressure. (For the excitation spectrum the situation is similar: the energy and 
momentum of the excitations are obtained as functions of k ;  the elimination of k 
finally yields the dispersion relation.) 

The temperature dependences of energy, pressure, lattice constant and chemical 
potential turn out to be qualitatively similar to those of the case C = 0.01 and therefore 
they are not displayed here. Instead we concentrate on the derivatives of E, namely 
the specific heats for constant length L =  Nr, and zero pressure (figure 7): 

CL=($) L cp=(g) P=O . (4.2) 

For high temperatures the specific heats approach the results of Toda and Saitoh (1983) 
for the classical model. For T + CO, Cp+ and CL+ $ which are the values for a classical 
gas of hard spheres. CL( T )  has a maximum in contrast to the'monotonic classical curve. 

When the results for two different systems with the coupling constants C, and C, 
are compared it should be noted that the temperatures TI and T2 of the systems are 
comparable if TI/ C, = T2/ C2. Therefore the units for the abscissae in figures 5 and 7 
have been chosen such that the figures can be compared directly. It can be seen that 
the system with C = 1 with increasing temperature approaches the classical results 
more rapidly than the system with C = 0.01. In this context we mention that the 
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0 1 2 3 4 
T 

Figure 7. Specific heats at zero pressure and constant length for the coupling C = 1. The 
arrow indicates the maximum of CL; the asymptotic values for T+co are a and f. The 
broken curves are the classical results. 

excitation spectrum at zero temperature exhibits dispersion relations which become 
more and more classical the larger C is (Mertens and Hader 1985). In the classical 
limit C + CO the dispersion is that of solitons and phonons (Sutherland 1978, Mertens 
1984). 

The weakly anharmonic regime C a  1 is particularly interesting for low temperatures. 
Here the specific heat Cp naturally is completely different from the corresponding 
classical quantity C:' (figure 7).  However, if the specific heat of a harmonic lattice 
(C, or C",, respectively) is subtracted, the anharmonic parts Cp - CH and C:' - CE' 
are no longer very different; only for very low temperatures are there certain deviations 
(figure 8 ) t  which are qualitatively similar for the whole regime 0.5 < C <CO. This 
confirms earlier approximate results from a path-integral approach (Mertens and 
Buttner 1980) and a semiclassical calculation (Bolterauer and Opper 1981). 

As Cy - CE' in the phenomenological theory of Mertens and Buttner (1981) can 
be calculated as the specific heat of an ideal soliton gas, these authors have interpreted 
the resemblance of C,- CH as a first hint that solitons play a role also in the quantum 
Toda lattice. 

However, since Cp- CH is not identical to C$'- CE' but differs in a characteristic 
way (figure 8), we are presently investigating the soliton-gas picture for the quantum 
case. For this purpose the finite-temperature excitation spectrum must be calculated. 
The particle and hole excitations are understood as soliton and phonon quasiparticles 
(in contrast to the zero-temperature case where these excitations are eigenstates). 
Finally the thermal behaviour of the quasiparticle ensembles has to be compared with 
Cp- C H .  

t For T i  0.2 we have checked our numerical results by an anharmonic perturbation theory (Leibfried and 
Ludwig 1961) where the Toda potential is expanded up to the fourth order. The result is Cp- C, = 
~ ~ T / ( 1 2 ~ 1 6 x C * ) ,  and the same with a negative sign for C,-C,; here C,= nT/6C is the Debye 
approximation for the harmonic lattice. 
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0.15 A 

1 

Figure 8. Anharmonic part of the specific heat at zero pressure for the coupling C = 1; the 
corresponding classical result is broken. The chain curve is the result of a perturbation 
theory; see second footnote. P = 0. 
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